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Abstract

People are able to learn clever cognitive strategies through trial and error from
small amounts of experience. This is facilitated by people’s ability to reflect on
their own thinking which is known as metacognition. To examine the effects of
deliberate systematic metacognitive reflection on how people learn how to plan,
the experimental group was guided to systematically reflect on their decision-
making process after every third decision. We found that participants assisted
by reflection prompts learned to plan better faster. Moreover, we found that
reflection led to immediate improvements in the participants’ planning strategies.
Our preliminary results do suggest that deliberate metacognitive reflection can help
people discover clever cognitive strategies from very small amounts of experience.
Understanding the role of reflection in human learning is a promising approach
for making reinforcement learning more sample efficient in both humans and
machines.

1 Introduction

One of the most impressive feats of human intelligence is people’s ability to discover and continuously
refine their own algorithms [23], 20]. That is, people are able to learn clever cognitive strategies
through trial and error. This ability is known as metacognitive reinforcement learning [17, 15,114} [12].
Although work in artificial intelligence has begun to recreate this ability in machines [4], those
algorithms still require much more experience to discover good algorithms than people do.

People’s superior ability to discover clever cognitive strategies from small amounts of experience
appears to be at least partly due to their capacity to reflect on their own thinking which is known as
metacognition [22]]. Metacognition comprises the monitoring of reasoning, reasoning about reasoning
(metareasoning), and the control of reasoning [6} [7, 21]] and is an active research topic in both
artificial intelligence and psychology [[L1,[10]]. The fact that we can direct people to use different
metacognitive strategies by simply asking them a series of questions [[8]] makes the human mind a
convenient platform for research on the potential benefits of different forms of metareasoning.

Although people have the capacity for metacognition, they do not always employ it. Furthermore, even
when people engage in metacognition, what they learn depends on which aspects of their thinking
they reflect on and how they reflect on it [8]. This raises the question which metacognitive strategies
are most conducive to the discovery of clever cognitive strategies. Previous work has developed
computational models of how people discover cognitive strategies [22} 15114} 120,[12]. These models
have given rise to cognitively-inspired reinforcement learning algorithms for automatic algorithm
discovery [4]. This approach is known as metacognitive reinforcement learning. Despite this
progress in reverse-engineering how people discover cognitive strategies, the potential contributions
of deliberate metacognitive reflection have yet to be investigated.
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We investigate this question in the context of reasoning about what to do (i.e., decision-making).
Concretely, we investigate how systematic metacognitive reflection affects people’s capacity to
discover adaptive decision strategies for decisions that require planning multiple steps ahead. As a
first step toward investigating which metareasoning algorithms might be most effective, we devised a
series of questions that guide people to monitor, reflect on, and control their decision strategies and
measured how the metareasoning algorithm entailed by answering those questions affects people’s
capacity to discover good planning strategies through trial and error, which is a form of metacognitive
reinforcement learning [[15} 14, [12].

We found that this metacognitive reflection helped participants discover better planning strategies
more quickly. This suggests that the metacognitive strategy we tested in our experiment might be a
promising approach to make reinforcement learning more sample efficient.

2 Method

The experiment was conducted in accordance to study protocol 429/2021BO2 approved by the
Independent Ethics Commission of the Medical Faculty of the University Tiibingen.

2.1 Participants

We recruited 41 participants from Amazon Mechanical Turk, 2 (4.9%) of whom were excluded
because they required more than three quiz attempts. Each participant was randomly assigned to be
either in the control condition or in the experimental condition. This resulted in 19 people in the
control condition and 20 in the experimental condition. The control condition spent on average 27
minutes on the experiment whereas the experimental condition spent 34 minutes on average. On
average a participant was 35 years old (range: 23-67 years; 18 female). Each participant received a
performance dependent bonus of up to $2.5 (mean bonus: $1.5) in addition to a payment of $2.

2.2 Procedure

After participants gave informed consent and completed the need for cognition scale questionnaire [9]
and the cognitive reflection test [3]], the experiment started with instructions on the experimental task.
Their understanding of the instructions was tested via a quiz comprising four basic comprehension
questions. If a participant answered one or more questions incorrectly they had to reread the
instructions and retake the quiz until they got all answers right. Participants were then informed about
the bonus scheme and played 30 trials of the decision-making task described below. After every third
trial, except for the last trial, participants were prompted to reflect on their decision (experimental
condition) or something irrelevant to the experiment (control condition).

2.3 Materials

2.3.1 Decision-Making Task

Since it is not possible to observe human planning directly, the underlying cognitive process has to be
inferred from people’s behavior. To this end, we employed the Mouselab Markov Decision Process
(Mouselab-MDP) paradigm [5]]. The Mouselab-MDP paradigm uses a spatial planning task in which
people’s information-gathering behavior is highly informative about their planning strategy. In our
version of this task, participants were tasked to move a spider from a starting node to one of 18 target
nodes. Each possible path consisted of 5 nodes, which contain rewards whose values are initially
occluded (see Figure[l). Participants can reveal the value of a reward for a fee of $1 by clicking on
the corresponding node. The fact that performing a planning operation requires the participant to first
economically acquire the necessary data through clicking makes the resulting data on which nodes a
participant clicked on in which order highly informative about what kind of planning strategy they
are using (e.g., depth-first search or breadth-first search). Once the spider is moved, clicking is no
longer possible. The spider uncovers and collects every reward on its way. The participants’ task
is to maximize their game score, which is the sum of the rewards collected by the spider minus the
amount spent to uncover the values of the rewards. Rewards are drawn from a Gaussian distribution
with mean 0 and standard deviation 1, 2, 4, 8, or 32 for nodes that are 1, 2, 3, 4, and 5 steps away
from the start node, respectively. This means that the rewards near the start node vary less than the



rewards at the target nodes, making it advantageous to start planning at the target nodes. Participants
have to solve several different instances of this planning task in a row — each time with a different set
of hidden rewards.
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Figure 1: The Mouselab-MDP paradigm. Participants can reveal rewards for a fee to plan a path to
one of the end nodes.

2.3.2 Prompts

After every third trial, participants were prompted with a short intervention. In the experimental
group, this intervention was designed to foster metacognitive reflection on the planning strategy used
in the last 3 trials. It started with the following information: ‘“Please reflect about your planning
success in the last three rounds by answering a couple of questions”. Participants then received a
brief objective feedback on their current performance, displayed for 4 seconds: “Your average score
in the last three rounds was X. Your average score in the three rounds before that was Y.”. Following
Wolfbauer et al. [24]], they were guided through different levels of reflection. First, they were asked to
describe their planning strategy: “How many clicks did you make to decide what to do?”, “Where did
you click in order to decide what to do?”” and “Why did you use that approach?”. Second, they were
asked to judge their planning strategy: “How well do you think your current strategy is working?”.
Third, they were asked to evaluate and learn from their previous approach: “Based on what you have
learned in the last rounds, what tip could you give to a person who performs this task for the first
time?”. Fourth, they were asked to plan their next approach: “Based on the previous questions, how
many clicks do you plan to do in the next rounds?” and “Based on the previous questions, where do
you plan to click in the next rounds?””. Each question was asked consecutively on its own and each
answer had to consist of at least one character, other than that there was no restriction. After this,
participants proceeded to the next trial of the decision-making task.

In the control condition, the intervention was designed to have the same duration and elicit similar
kinds of activities as the intervention in the experimental condition. It started with the same brief
objective feedback of their current performance that was shown to the experimental group. But unlike
in the experimental condition, participants in the control condition then answered a question about
their personal preferences, such as “What is your favorite food and why?” and then proceeded to
the next trial of the decision-making task. On average, the experimental condition answered the
entire prompt with 143 characters and took 80 seconds while the control condition answered with
128 characters on average and took 48 seconds.

2.3.3 Questionnaires

We hypothesized that both the attitude towards thinking and the ability to reflect may influence
participant performance and the impact of reflection prompts. Therefore, we measured both qualities
and included them as covariates in the analysis.



We assessed the degree of satisfaction a participant associates with thinking using the need for
cognition (NFC) scale [3]. It consists of 18 items (e.g. “I prefer complex to simple problems”’) and
asks for the degree of approval on a 5-point scale ranging from “extremely uncharacteristic of me”
to “extremely characteristic of me”. In addition, we included the cognitive reflection test (CRT) [9]
to measure participants’ “ability or disposition to reflect on a question and resist reporting the first
response that comes to mind” ([9]], p.1). The CRT consists of 6 questions such as “A bat and a ball
cost $1.10 in total. The bat costs $1.00 more than the ball. How much does the ball cost?”. Each
participant’s performance is scored by their number of correct answers.

2.3.4 Computational Microscope

The computational microscope [13] is a computational method for inferring the planning strategies
participants use in the Mouselab-MDP paradigm from their information-gathering behavior. It infers
a participant’s planning strategies by calculating the likelihood for each of 89 predefined planning
strategies based on the sequence of clicks performed and a prior that takes the participant’s previous
strategy choice into account. The predefined planning strategies include, for example, the optimal
strategy for this task which starts by exploring the final outcomes and terminates clicking upon
finding the maximum value of the reward distribution, breadth-first search, depth-first search, random
planning, and no planning. In addition, [[13|] grouped these planning strategies into 13 different
types, including myopic planning strategies (which focus on the reward for the first move), goal-
setting strategies (which focus on the rewards at the potential final destinations), and frugal planning
strategies (which plan very little). The computational microscope has been empirically validated
on the Mouselab-MDP paradigm; it made accurate inferences and was able to detect the effects
of feedback on metacognitive learning [[13]]. We employ the computational microscope to identify
possible effects of systematic reflection on the temporal evolution of people’s planning strategies.

2.4 Data analysis

To analyse how the observed behavior depends on different factors, we employed linear mixed models
(LMM) for continuous data and generalized LMMs (GLMMs) for binary data.

To answer the question of how systematic metacognitive reflection affects individuals’ planning
performance, we analyzed participants’ game score per trial. The employed LMMs regressed the
participants’ trial-by-trial game scores onto the trial number and the experimental condition. In
addition the models included the participants’ NFC and CRT scores as covariate and their interactions
with the independent variables (see Appendix Table[I). To answer the question of how systematic
metacognitive reflection affects individuals’ ability to discover adaptive planning strategies, we addi-
tionally analyzed the temporal evolution of their planning strategy as measured by the computational
microscope, the type of their planning strategy, and its adaptiveness.

The first and most fine-grained descriptor of a participant’s planning on a given trial was their planning
strategy. Using the computational microscope, we inferred which planning strategy a participant
used in each trial. To measure the adaptiveness of people’s planning strategies, we estimated each
strategy’s expected game score by its average performance across 100,000 simulations. In a next
step, we calculated whether participants changed their strategy between trials, whether such a change
was advantageous or disadvantageous in terms of expected game score, and the magnitude of such
a change in terms of expected game score. For each of the three variables, we analyzed how they
depend on the experimental condition, trial number, NFC score, CRT score, reflection prompt and
control prompt (see Appendix Tables[7}j9). The latter two described whether an intervention occurred
in the trial transition.

The second descriptor was the type of the planning strategy. The computational microscope describes
13 different types of planning strategies based on similarity. For each trial, it assigns the planning
strategy to a super-ordinate strategy type. We analyzed how the application of a strategy type depends
on the experimental condition, trial number and their interactions (see Appendix Table[3)). As we
employed this procedure for each strategy type, we corrected the p-values with the Benjamini-
Hochberg procedure [2]. In addition, we analyzed whether participants switched the type of planning
strategy between trials (see Appendix Table|[6).

The third descriptor was the adaptiveness of the planning strategy. Our sample used 44 different
planning strategies in total. Within these, we identified two clusters by applying k-means clustering



to the expected game scores of the strategies. In choosing the number of clusters, we followed the
average silhouette method [19]]. Cluster 1 included 35 strategies whose mean expected score was
33.35; we will refer to these strategies as adaptive planning strategies. Cluster 2 included 9 strategies
whose mean expected game score was -1.52; we therefore refer to these strategies as the maladaptive
planning strategies. We then analyzed how the application of adaptive planning strategies depend
on condition, trial number, NFC score, CRT score and their interactions (see Appendix Table E])
Moreover, we analysed whether participants switched between adaptive and maladaptive planning
strategies between trials and if so in which direction using the same model as for strategy and type
changes (see Appendix Tables [3]and ).

The data-analysis was performed in R [[18]. We used the packages Ime4 [[1] for fitting and ImerTest
[L6] to obtain corresponding p-values. We consider variables with a p-value lower than 0.05 as
significant predictors in our models. All details of these analyses and their results are available in the
Appendix.

3 Results

3.1 Participants who were guided to reflect on their decisions learned to plan better faster

The experimental group performed better than the control condition (£(37) = —1.34,p = .186).
The mean game score per trial was 21.6 (Median: 26.5, SD: 32.7) in the control condition and 27.8
(Median: 30, SD: 30.3) in the experimental condition. The usage of adaptive planning strategies
(regression coefficient 5 = 25.68,p < .001) and the game score (8 = 8.39,p < .001) increased
significantly throughout the experiment. The experimental group appeared to learn more rapidly in
the beginning and reach a plateau earlier (see Figure[2). To test this assumption we analysed the trials
in which the reflection group showed ongoing learning separately. We estimated this phase to be the
first 12 trials, since no participant in the experimental group switched to an adaptive planning strategy
or vice versa thereafter.
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Figure 2: A: Performance curve: Mean game score per trial and condition. B: Learning curve:
Proportion of participants planning with an adaptive planning strategy per trial and condition. The
vertical lines represent the occurrence of reflection or control prompts after every 3rd trial. The
dashed areas convey 95% confidence intervals.

In the first 12 trials, the experimental condition performed significantly better than the control
condition (¢(37) = —2.80,p = .008). The mean game score per trial was 11.3 (Median: 14, SD:
34.4) in the control condition and 23.3 (Median: 25.5, SD: 29.3) in the experimental condition
(see Figure3]A). Reflection prompts significantly increased the proportion of people who adopted
adaptive planning strategies (3 = 6.87,p = .029, see Figure [3B). The control group applied an
adaptive strategy in 39% of trials, whereas the experimental group did so in 72% of trials. Again we
found a positive effect of trial number on game score and the use of adaptive planning strategies (see
Appendix Table[TT).

The increased use of adaptive planning strategies in the experimental condition might be due to
increased switching from maladaptive to adaptive planning strategies. Within the first six trials,
15.7% of participants in the control condition performed one or more switches, whereas 50% of
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Figure 3: Systematic metacognitive reflection helped people to learn better faster A: Performance:
Mean game score in the first 12 trials per condition presented as box-plot. B: Adaptiveness: Use of
adaptive planning strategies in the first 12 trials per group. The error bars convey 95% confidence
intervals.

participants in the experimental condition did so. There was a positive (and almost statistically
significant) effect of reflection on the frequency of switches in the first 12 trials (8 = 3.03, p = .052)
as well as a significant negative effect of the interaction of the experimental condition and trial
number (8 = —0.61, p = .021). This suggests that the experimental condition performed exploration
earlier and more frequently than the control condition. This also implies that in the beginning of
the experiment the experimental group learned more than the control group. We did not find this
pattern for switches between more fine-grained planning strategies or types of planning strategies
(see Appendix Table[T6|and [T3).

Across all 30 trials, we found that the experimental group performed significantly more switches
from an adaptive to a maladaptive planning strategy (3 = —6.69, p = .044) than the control group.
Curiously, the experimental group also made more switches from a strategy with a higher expected
game score to one with lower expected game score (5 = —2.5, p = .041) than the control group. This
effect did not remain significant when we only considered the first 12 trials (8 = —5.14, p = .098)
and when we analysed continuous decreases of expected game score due to strategy switches
(8 = —15.45,p = .066). This suggest that in later trials, where adaptive strategies were already
found, increased exploration led to less advantageous switching.

3.2 Reflection prompts led to immediate beneficial changes in planning on the next trial

Since the groups differed in terms of their performance and their use of adaptation strategies, we
now examine the immediate effects of reflection prompts. Considering all 30 trials as well as only
the first 12 trials, we found that the presentation of a reflection prompt increased the probability of
an immediate change in the strategy, the strategy type, or the adaptiveness of the strategy from the
previous trial to the next trial (all 5 : 1.46 — 3.35, all p < .041). This was not the case for control
prompts (all 5 : —0.5 — 3.05, all p > .148). Hence, the effect of the reflection prompts cannot be
solely due to the presentation of performance feedback or the interruption of the task, because these
elements were also present in the control prompt. Instead, this difference is most likely due to the
metacognitive reflection script.

In addition, the difference in expected game score when switching between strategies was more
positive when the switch followed a reflection prompt (trials 1-12 trials: g : 47.13,p = .008,
trials 1-30: 5 : 22.08,p = .006). In the first 12 trials, the average gain in expected game score
when performing a switch after a reflection prompt was 19.74 (Median: 18.4, SD: 20.2) and 3.9
(Median: 0.2, SD: 22.4) in the remaining trials of the experimental condition. Reflection prompts thus
elicited immediate and highly beneficial changes in planning strategies. This further corroborates the
interpretation that the higher performance of the experimental condition was due to the reflection
prompts rather than preexisting differences between the two groups.
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Figure 4: Application of different types of planning strategies over time per condition: A: Goal-setting
strategies with limited backward planning, start to explore final outcomes and terminate depending
whether a high enough reward has been found. B: Frugal planning strategies, explore very little or not
at all. C: Local search strategies, focus on exploring single branches. D: Frugal goal-setting planning
strategies, start to explore final outcomes but explore very little overall.

3.3 How did reflection affect planning ?

Having seen that reflection prompts improved human planning immediately, we now inspect how this
improvement was achieved. Identifying how reflection changes people’s planning strategies is an
important first step toward understanding the mechanisms of reflective learning and might point to
opportunities to improve our reflection script. Due to group differences in the initial strategy use and
the low sample size, we did not have enough statistical power for systematic hypothesis testing. So
we only report descriptive statistics and exploratory analyses instead.

We first compared the experimental condition and the control condition in terms of their most
frequently used strategies. The most frequently used strategy type of the experimental group was
goal-setting strategies with limited backward planning. These highly adaptive strategies first inspect
the potential final destinations to select one or more potential goals and may then inspect some of the
nodes along the path to the chosen goal(s). The experimental group used this adaptive strategy type
in 27.2% of the trials whereas the control group used it in only 19.5% of the trials (see Figure dA).
The groups differed the most in how often they used frugal planning strategies, that is strategies that
perform very little planning or no planning at all (see Figure @B). Frugal planning was the most
frequent strategy type of the control group, which used it in 31.8% of all trials, but the experimental
group used it less than half as often, which used it in only 15.8% of all trials.

Six out of eight strategy types became more frequent over time or less frequent over time (see
Appendix Table[5). For two of them, the changes in the control group and the experimental group
pointed in opposite directions (see Figure [C and D). Local-search strategies focus on exploring
branches for which most rewards are already known. In the experimental condition, participants’ use
of such strategies decreased over time (5 = —2.19, p = .005). By contrast, in the control condition,
participants’ use of such strategies increased over time (8 = 0.41,p = .019), see Figure [d[C. As
shown in Figure @D, we found the same pattern for frugal goal-setting strategies (control group:



B =1.04,p < .001, experimental group: 8 = —2.3,p < .001). These strategies are similar to the
goal-setting strategies with limited backward planning in that they focus on the rewards of potential
final destinations; but they perform less planning overall.

The differences in how often the two groups relied on frugal strategies and frugal goal-setting
strategies suggests that reflection might led people to plan more. This hypothesis still needs to be
tested in a larger experiment; with a larger data set, analyses of how fast certain types of strategies
were adopted or abandoned may lead to additional insights.

3.4 The influence of Need for Cognition (NFC) and Cognitive Reflection (CRT)

Looking at all 30 trials, we found that high NFC reduced the rate at which participants’ game score
increased with practice (8 = —2.64, p = .036) and the rate at which they adopted adaptive strategies
(6 = —12.21,p < .001). Interestingly, the opposite was the case for the experimental condition
(game score: f = 4.96, p = .004, adaptiveness: § = 12.58, p =< .001). This suggests that, on the
one hand, high NFC made learning more difficult in the control condition but, on the other hand,
made reflection prompts more effective in the experimental condition. This might be because a higher
need for cognition makes the experimental condition more engaging and the control condition less
engaging.

In addition, we found that in the control condition people who performed better on the CRT adopted
adaptive strategies faster than people with a lower CRT score (8 = 15.26,p < .001). But when
reflection prompts were provided then people with low CRT scores learned just as fast as people with
high CRT scores (6 = —13.17,p < .001). This suggests that the reflection prompts were especially
beneficial for people with low CRT scores. We also found a positive correlation between participants’
performance on the CRT and the number of clicks they performed prior to the first intervention
(r(115) = .24, p = .009.), hence people with low CRT tend to underplan in the beginning. We thus
assume that reflection prompts were especially beneficial for people who tend to make less-deliberate
decisions.

4 Discussion

In summary, we found that a specific method for deliberate metacognitive reflection boosted our
participants’ (metacognitive) reinforcement learning to a significant extent. The main limitation of
our study is its low sample size. As a consequence, the two groups differed in their initial performance
and initial strategy use. This complicates the interpretation of our findings. Our conclusions should
therefore be taken with a grain of salt. Although more research is needed to assess the robustness
and reproducibility of our findings, our preliminary results do suggest that deliberate metacognitive
reflection can help people discover clever cognitive strategies from very small amounts of experience.
This might also be true of other forms of reinforcement learning. More generally, the high sample
efficiency of human learning could be partly due to sophisticated learning mechanisms that rely on
reasoning. This makes investigating the role of (metacognitive) reflection in human (metacognitive)
learning a promising starting point for making reinforcement learning more sample efficient in both
humans and machines.

In future work, we will measure the degree to which participants engage with the reflection prompts
and investigate whether it moderates the effect of reflection on learning. In addition, we plan to
include a second passive control condition in which participants work on the task continuously
without breaks to rule out potential negative disruption effects. Moreover, future work will investigate
how the benefits of metacognitive reflection depend on what exactly people reflect on and how
they reflect on it. We are planning to investigate this question in the Mouselab-MDP paradigm by
varying the reflection script across different experimental conditions. This will hopefully provide Al
researchers with some inspiration as to which kinds of metareasoning might be most worthwhile to
incorporate into intelligent systems. Developing computational models of metacognitive reflection
and its contributions to metacognitive learning is an exciting direction for future research. In the long
run, this line of research lead to metacognitive intelligent systems that can discover and continuously
improve their own algorithms.
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Appendix

Table 1: Linear mixed-model for game score (30 trials)

Fixed Effect Estimate 95% CI df t P Significance
Intercept 22.65 [15.9,29.4] 35 6.39 <.001 *
Condition 4.11 [-5.83,14.05] 35 0.79 436

Trial 8.39 [5.74,11.04] 1125 6.2 <001 *
CRT 2.52 [-2.41,7.46] 35 097  .337

NFC -0.31 [-4.95,4.34] 35 -0.12 901
Condition:Trial -3.99 [-7.59,-0.39] 1125 -2.17 .03 *
CRT:Trial -1.48 [-4.37, 1.4] 1125 -1.01 315
NFC:Trial -2.64 [-5.11,-0.18] 1125 -2.1 .036 *
Condition:CRT:Trial 1.84 [-1.82,5.5] 1125 099  .325
Condition:NFC:Trial 4.96 [1.6,8.31] 1125 2.89 .004 *

Table 2: Generalized linear mixed-model for the use of adaptive strategies (30 trials)

Fixed Effect Estimate 95% CI z P Significance
Intercept 13.66 [3.15, 28.46] 2.4 016 *
Condition 0.69 [-12.51, 12.8] 0.12  .906
Trial 25.68 [17.56, 37.78] 519 <.001 *
CRT 3.09 [-1.89,9.89] 1.36  .174

NFC -1.56 [-8.87, 3.71] -0.53  .598
Condition:Trial -23.26 [-35.26,-15.07] -4.71 <.001 *
CRT:Trial 15.26 [10.16, 22.66] 499 <001 *
NFC:Trial -12.21 [-17.92,-8.28] -5.18 <.001 *
Condition:CRT:Trial -13.17 [-20.58, -8] -4.27 <.001
Condition:NFC:Trial 12.58 [8.54, 18.36] 523 <.001
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Table 3: Generalized linear mixed-model for changes between adaptive and maladaptive strategies
(30 trials)

Fixed Effect Estimate 95% CI z P Significance
Intercept -2.78 [-3.91,-1.93] -5.13 <.001 *
Condition 0.94 [-0.92,2.71] 099 .321

Trial -0.05 [-0.14,0.02] -1.34 .18l

CRT -0.47 [-1.27,0.29] -1.18 .238

NFC -0.18 [-0.79,0.45] -0.57 .572
ReflectionPrompt 2.9 [1.02, 5.02] 2.87 .004 *
ControlPrompt 0.24 [-1.94,2.14] 023 815
Condition:Trial -0.36 [-0.78, -0.1] -1.95 .051
NFC:Trial 0.02 [-0.04,0.07] 0.54  .588
CRT:Trial 0.02 [-0.06,0.08] 0.51 .608
ReflectionPrompt:Trial  -0.25 [-0.7, 0.04] -1.39 165
ControlPrompt:Trial -0.06 [-0.26,0.08] -0.66 .508
Condition:NFC:Trial 0.01 [-0.1, 0.15] 0.22 .826
Condition:CRT:Trial 0.17 [0.01, 0.39] 1.74  .082

Table 4: Generalized linear mixed-model for changes towards an adaptive strategy (30 trials)

Fixed Effect Estimate  95% CI z P Significance
Intercept 9.09 [2.68, 26.79] 2.01 .045

Condition -6.69 [-15.38,-1.51] -2.01 .044 *

Trial -0.5 [-1.34, -0.05] -1.63 .103

CRT 1.99 [0.3, 4.72] 1.92  .055

NFC -0.43 [-1.73, 0.68] -0.74 46
ReflectionPrompt  1.16 [-2.05, 5.22] 0.68  .497
ControlPrompt 0.18 [-3.61, 4.47] 0.09 .927
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Table 5: Generalized linear mixed-model for types of planning strategies (30 trials)

Fixed Effect Estimate 95% CI z p (corrected)  Significance
Goal-setting with limited backward planning
Intercept -7.05 [-12.45,-3.35] -2.76 .008 *
Condition 1.91 [-2.7, 6.23] 0.89  .497
Trial 1.17 [0.77, 1.64] 5.35 <.001 *
Condition:Trial  -0.37 [-0.93, 0.17] -1.32 248
Local search strategies
Intercept -4.69 [-9.22, -2.8] -3.51  <.001 *
Condition -3.84 [-7.28, -0.64] 2.5 .098
Trial 0.41 [0.09, 0.76] 245 019 *
Condition:Trial -2.19 [-3.94, -0.98] -3 .005 *
Other miscellaneous strategies
Intercept -7.48 [-12.52,-3.88] -3.44 <.001 *
Condition 221 [-2.23, 6.3] 1.08  .446
Trial 0.93 [0.56, 1.34] 475 <001 *
Condition:Trial  -0.08 [-0.58, 0.41] -0.31 755
Forward planning strategies
Intercept -34.7 [-94.77, -18.34] -2.63 .01 *
Condition 22.05 [6.38, 79.33] 1.79 217
Trial -14.9 [-49.4, -5.91] -2.01 .05
Condition:Trial  14.02 [5.02, 48.5] 1.89  .093
Frugal goal-setting strategies
Intercept -10.29 [-15.74, -6.88] -5.47 <.001 *
Condition 0.01 [-4.37,4.67] 0.01 .994
Trial 1.04 [0.59, 1.55] 427 <001
Condition:Trial  -2.3 [-3.33, -1.43] -479  <.001
Myopic planning strategies
Intercept -8.74 [-13.32, -5.28] -4.7 <.001 *
Condition -0.25 [-3.98, 3.62] -0.14 994
Trial 0.07 [-0.37, 0.52] 031 .754
Condition:Trial -1.84 [-2.69, -1.09] -4.55 <.001 *
Frugal planning strategies
Intercept -3.08 [-6.9, -0.39] -2.14  .033 *
Condition -3.6 [-8.02, 0.31] -1.74 217
Trial 2.4 [-2.96, -1.92] -9.06 <.001
Condition:Trial  1.91 [1.25,2.6] 5.59 <.001
Strategy that explores immediate rewards on
the paths to the best final outcomes with satisficing
Intercept -10.13 [-16.56, -6.31] -4.63 <.001 *
Condition -3.1 [-10.87,2.67] -1.08 .446
Trial 1.39 [0.68, 2.29] 345 <.001 *
Condition:Trial  1.65 [-0.58, 5.32] 1.15 287
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Table 6: Generalized linear mixed-model for changes between types of planning strategies (30 trials)

Fixed Effect Estimate 95% CI z P Significance
Intercept -2.54 [-3.43,-1.75] -6.02 <.001 *
Condition 0.56 [-0.64,1.77] 093 .352
Trial -0.01 [-0.06,0.04] -0.55 .583

CRT -0.37 [-0.9, 0.15] -1.41 .16

NFC -0.04 [-0.53,0.48] -0.14 .886
ReflectionPrompt 1.46 [0.31, 2.62] 252 012 *
ControlPrompt -0.5 [-2.02,0.86] -0.7 485
Condition:Trial -0.06 [-0.14,0.02] -1.55 .12
NFC:Trial 0.03 [0, 0.06] 1.73  .084
CRT:Trial 0.01 [-0.03,0.04] 036 .715
ReflectionPrompt:Trial  -0.07 [-0.16,0.01] -1.73 .083
ControlPrompt:Trial 0.04 [-0.04,0.12] 1.05 .292
Condition:NFC:Trial 0.02 [-0.02, 0.07] 1.01 315
Condition:CRT:Trial 0.04 [0, 0.08] 1.72  .086

Table 7: Generalized linear mixed-model for changes between planning strategies (30 trials)

Fixed Effect Estimate 95% CI z P Significance
Intercept -2.49 [-3.37,-1.7] -599 <.001 *
Condition 0.65 [-0.53,1.84] 1.1 273
Trial -0.01 [-0.06,0.04] -0.38 .701

CRT -0.25 [-0.77,0.25] -0.99 .324
NFC 0.05 [-0.44,0.56] 0.19 .846
ReflectionPrompt 1.35 [0.24,2.45] 243 015 *
ControlPrompt -0.46 [-1.89,0.85] -0.67 .5
Condition:Trial -0.07 [-0.14,0.01] -1.82 .069
NFC:Trial 0.02 [-0.01,0.05] 1.36 .175
CRT:Trial 0 [-0.04,0.03] -0.04 .967
ReflectionPrompt: Trial ~ -0.06 [-0.15,0.01] -1.61 .107
ControlPrompt:Trial 0.04 [-0.03,0.12] 1.13 257
Condition:NFC:Trial 0.02 [-0.02,0.07] 0.93 .353
Condition:CRT:Trial 0.04 [0, 0.09] 2.02 044 *

Table 8: Generalized linear mixed-model for changes towards a planning strategy with higher
expected game score (30 trials)

Fixed Effect Estimate 95% CI z D Significance
Intercept 2.37 [0.75, 4.17] 245 014
Condition 2.5 [-4.8, -0.49] 205 .041 *
Trial -0.08 [-0.19,0.01] -1.5 134
CRT 0.57 [-0.36,1.56] 1.17 .244
NEC -0.32 [-1.46,0.7] -0.6 .55
ReflectionPrompt 1.82 [-0.26, 4.22] 1.61 107
ControlPrompt 4.69 [0.07,12.11] 1.57 .116
Condition:Trial 0.11 [-0.03,0.26] 146 .144
NFC:Trial 0.02 [-0.04,0.09] 0.72 473
CRT:Trial 0.01 [-0.07,0.09] 0.15 .877

ReflectionPrompt:Trial  -0.06 [-0.22,0.09] -0.8 424
ControlPrompt:Trial -0.28 [-0.48,-0.08] -1.78 .075

Condition:NFC:Trial -0.03 [-0.11,0.04] -0.87 .385
Condition:CRT:Trial -0.05 [-0.13,0.02] -1.29 .196
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Table 9: Linear mixed model for the difference in expected game score with changes in planning
strategies. (30 trials)

Fixed Effect Estimate 95% CI daf ¢ P Significance
Intercept 20.03 [8.67, 31.39] 99 326 .002 *
Condition -15.45 [-30.83,-0.08] 99 -1.86 .066
Trial -0.65 [-1.35,0.05] 99 -1.73 .087
CRT 2.46 [-3.86, 8.77] 99 0.72 473
NFC -8.16 [-14.96,-1.36] 99 -2.22 .029 *
ReflectionPrompt 22.08 [7.63, 36.53] 99 2.83 .006 *
ControlPrompt 15.17 [-6.46, 36.8] 9 13 .198
Condition:Trial 0.47 [-0.54, 1.48] 99 086 .39
NFC:Trial 0.33 [-0.11, 0.78] 99 139 .169
CRT:Trial 0.12 [-0.44, 0.67] 99 039 7
ReflectionPrompt:Trial -1.02 [-2.09, 0.04] 99 -1.79 .077
ControlPrompt:Trial -0.82 [-2.03, 0.39] 99 -126 211
Condition:NFC:Trial 0.02 [-0.47,0.52] 99 0.09 .932

Condition:CRT:Trial -0.25 [-0.76, 0.26] 99 -0.89 374

Table 10: Linear mixed-model for game score (first 12 trials)

Fixed Effect Estimate 95% CI df t D Significance
Intercept 12.98 [6.89,19.06] 35 4.06 <.001 *
Condition 8.76 [-0.2,17.71] 35 1.86 .071

Trial 5.84 [1.38, 10.3] 423 256 .011 *
CRT 4.03 [-0.41,8.48] 35 1.73  .093

NEC -0.41 [-4.59,3.78] 35 -0.19 .854
Condition:Trial 0.25 [-5.81,6.32] 423 0.08 .935
CRT:Trial -3.69 [-8.56,1.17] 423 -148 .14
NFC:Trial -2.83 [-6.99,1.32] 423 -1.33 .184
Condition:CRT:Trial ~ 4.35 [-1.82,10.51] 423 138 .17
Condition:NFC:Trial 4.25 [-1.4,9.9] 423 147  .143

Table 11: Generalized linear mixed-model for the use of adaptive strategies (first 12 trials)

Fixed Effect Estimate 95% CI z D Significance
Intercept -2.23 [-6.67,1.19] -1.25 213
Condition 6.87 [1.78,14.52] 2.19 .029 *
Trial 3.52 [2.19,5.99] 393 <001 *
CRT -0.32 [-3.04,2.43] -0.25 .803

NEFC 0.41 [-2.07,3.01] 035 .727
Condition:Trial -2.1 [-4.59,-0.59] -2.24 .025 *
CRT:Trial 0.2 [-1.05,2.23] 0.26  .793
NFC:Trial -0.34 [-1.59,0.87] -0.58 .563
Condition:CRT:Trial  0.74 [-1.35,2.2] 0.88 377
Condition:NFC:Trial  0.09 [-1.32,1.48] 0.13  .896
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Table 12: Generalized linear mixed-model for changes between adaptive and maladaptive strategies
(first 12 trials)

Fixed Effect Estimate 95% CI z P Significance
Intercept -5.31 [-7.47,-3.51] -423 <001 *
Condition 3.03 [0.21, 5.26] 1.95 .052

Trial 0.3 [0.05, 0.56] 205 .04 *
CRT -0.82 [-1.91,0.28] -1.42 .155
NFC -0.19 [-1.12,0.77] -04 .688
ReflectionPrompt 3.35 [0.99, 5.81] 273 .006 *
ControlPrompt 3.05 [-1.34,7.23] 1.45 148
Condition:Trial -0.61 [-1.17,-0.19] -2.31 .021 *
NFC:Trial -0.02 [-0.16,0.11] -0.33 .738
CRT:Trial 0.04 [-0.14, 0.2] 0.51  .609
ReflectionPrompt:Trial -0.36 [-0.87, 0.06] -1.53 126
ControlPrompt:Trial -0.56 [-1.45,-0.02] -1.5 133
Condition:NFC:Trial 0.06 [-0.08,0.22] 0.81 419
Condition:CRT:Trial 0.23 [0.03, 0.48] 1.99 .047 *

Table 13: Generalized linear mixed-model for changes towards an adaptive strategy (first 12 trials)

Fixed Effect Estimate  95% CI z P Significance
Intercept 7.53 [-0.86, 15.93] 1.76  .078

Condition -5.14 [-11.23, 0.94] -1.66 .098

Trial -0.46 [-1.09, 0.18] -1.4 .16

CRT 1.55 [-0.48, 3.58] 1.5 134

NFC -0.23 [-1.39, 0.93] -0.39  .698
ReflectionPrompt  0.96 [-2.17, 4.09] 0.6 547
ControlPrompt 30.22 [-8851.23, 8881.39] O 1
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Table 14: Generalized linear mixed-model for types of planning strategies (first 12 trials)

Fixed Effect Estimate 95% CI z p (corrected)  Significance
Goal-setting with limited backward planning
Intercept -11.45 [-17.11,-7.65] -5.51 <.001 *
Condition 1.78 [-2.57, 6.73] 0.84 491
Trial 2.57 [1.46,4.12] 3.88 <.001 *
Condition:Trial  -0.75 [-2.41, 0.63] -0.99 45
Local search strategies
Intercept -7.28 [-12.44,-3.69] -3.43 <.001 *
Condition -1.44 [-6.02, 2.55] -0.81 491
Trial 0.05 [-0.52, 0.62] 0.17  .868
Condition:Trial  -0.93 [-2.33, 0.23] -1.47 329
Forward planning strategies
Intercept -17.35 [-40.56,-10.24] -3.09 .002 *
Condition 5.67 [-5.2,26.73] 1.09 491
Trial -4.62 [-17.38, -1.3] -1.64 176
Condition:Trial  4.76 [1.34,17.52] 1.68 326
Other miscellaneous strategies
Intercept -10.76 [-16.17, -6] -445 <.001 *
Condition 3.32 [-0.61, 7.8] 1.63 357
Trial 3.08 [1.73, 5.04] 373  <.001 *
Condition:Trial  -2.58 [-4.6,-1.13] -3 .019 *
Frugal goal-setting strategies
Intercept -11.03 [-24.26,-7.22] -4.03 <.001 *
Condition 0.99 [-6.25, 12.61] 035 723
Trial -0.52 [-1.61, 0.44] -1.02 358
Condition:Trial 0.1 [-1.15, 1.42] 0.16 .871
Myopic planning strategies
Intercept -8.05 [-13.47,-4.74] -3.8 <.001 *
Condition 1.64 [-2.15,5.5] 0.88  .491
Trial -0.52 [-1.38, 0.24] -1.29 276
Condition:Trial  -0.33 [-1.3, 0.68] -0.66  .592
Frugal planning strategies
Intercept -0.2 [-3.98, 3.01] -0.13  .895
Condition -6.37 [-11.67,-2.19] -2.73 .044
Trial -1.59 [-2.33,-0.98] -4.69  <.001
Condition:Trial 0.5 [-0.4, 1.42] 1.09 45
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Table 15: Generalized linear mixed-model for changes between types of planning strategies (first 12
trials)

Fixed Effect Estimate 95% CI z p Significance
Intercept -3.59 [-5.03,-24] -4.64 <001 *
Condition 1.53 [-0.29,3.36] 1.59 .111

Trial 0.17 [-0.01,0.36] 1.74 .082

CRT -0.45 [-1.24, 0.3] -1.14 254
NFC -0.08 [-0.8, 0.69] -0.21  .837
ReflectionPrompt 2.42 [0.54,4.33] 2.5 .013 *
ControlPrompt 0.78 [-2.66,3.54] 0.5 618
Condition:Trial -0.19 [-0.43,0.06] -1.47 .143
NFC:Trial 0 [-Inf, 0.11] -0.01 .996
CRT:Trial 0.02 [-0.12,0.14] 025 .8
ReflectionPrompt:Trial  -0.27 [-0.6, 0.02] -1.63  .103
ControlPrompt:Trial -0.16 [-0.63, 0.3] -0.69 489
Condition:NFC:Trial 0.07 [-0.03,0.18] 1.36 .174
Condition:CRT:Trial 0.04 [-0.06,0.16] 0.75 .454

Table 16: Generalized linear mixed-model for changes between planning strategies (first 12 trials)

Fixed Effect Estimate 95% CI z D Significance
Intercept -3.34 [-4.92,-2.06] -4.64 <001 *
Condition 1.35 [-0.43,3.24] 147 .143

Trial 0.15 [-0.03,0.34] 1.61 .108

CRT -0.44 [-1.21,0.31] -1.14 .255

NFC -0.15 [-0.87,0.59] -0.41 .679
ReflectionPrompt 1.91 [0.07, 3.77] 2.05 041 *
ControlPrompt 0.52 [-2.93,3.35] 034 736
Condition:Trial -0.17 [-0.43,0.07] -1.38 .168
NFC:Trial 0 [-0.11,0.11] 0.07 .942
CRT:Trial 0.02 [-0.11,0.14] 037 713
ReflectionPrompt:Trial -0.16 [-0.46,0.13] -1.08 .282
ControlPrompt:Trial -0.14 [-0.6, 0.33] -0.59 .555
Condition:NFC:Trial 0.09 [-0.01,0.21] 1.77 .077
Condition:CRT:Trial 0.07 [-0.04,0.19] 124 216

Table 17: Generalized linear mixed-model for changes towards a planning strategy with higher
expected game score (first 12 trials)

Fixed Effect Estimate 95% CI z P Significance
Intercept 3.19 [-1.41,7.8] 1.36 174
Condition -3.49 [-8.86, 1.89] -1.27 203
Trial -0.2 [-0.87, 0.46] -0.6 .548
CRT 1.29 [-0.79, 3.36] 1.22 223
NFC -1 [-3.77, 1.78] -0.7 482
ReflectionPrompt 5.47 [-0.55, 11.5] 1.78  .075
ControlPrompt 16.65 [-12279.49, 12313.22] O 1
Condition:Trial 0.29 [-0.52, 1.1] 0.69 488
NFC:Trial 0.14 [-0.23, 0.51] 0.75 453
CRT:Trial -0.1 [-0.53, 0.33] -0.46 .643
ReflectionPrompt:Trial —-0.65 [-1.45,0.14] -1.61 .108
ControlPrompt:Trial 3.15 [-1945.37, 1945.16] 0 1
Condition:NFC:Trial 0 [-0.22, 0.23] 0.02 981
Condition:CRT:Trial -0.09 [-0.43, 0.25] -0.52 .603
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Table 18: Linear mixed model for the difference in expected game score with changes in planning
strategies. (first 12 trials)

Fixed Effect Estimate 95% CI daf ¢ D Significance
Intercept 14.12 [-14.89,43.14] 39 0.83 41
Condition -17.54 [-53.54,18.45] 39 -0.83 .409
Trial 0.16 [-4.04, 4.36] 39 0.06 .949
CRT 5.75 [-7.74, 19.24] 39 073 47
NFC -12.16 [-29.53,5.2] 39 -1.2 238
ReflectionPrompt 47.13 [18.42,75.84] 39 281 008 *
ControlPrompt 64.92 [0.8, 129.03] 39 1.73  .091
Condition:Trial 1.06 [-4.41, 6.52] 39 033 742
NFC:Trial 1.6 [-0.91, 4.1] 39 1.09 .283
CRT:Trial -0.32 [-2.89, 2.25] 39 -0.21 .833
ReflectionPrompt:Trial -5.76 [-10.28,-1.23] 39 -2.18 .036 *
ControlPrompt:Trial -9.19 [-18.88, 0.51] 39 -1.62 .113
Condition:NFC:Trial -0.5 [-2.17, 1.17] 39 -0.51 .61
Condition:CRT:Trial -0.42 [-2.4, 1.55] 39 -037 717
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